

Mingfeng Xue

Bear Seminar

Nov. 7th, 2023

Large language models (LLMs)

- Skip the feature engineering processes
- Thinking is directly correlated to language (e.g., think-aloud survey; Slobin, 1996)
- Open-ended responses are expressed in natural languages
- LLMs have proven to be effective in dealing various natural languages task
 (Bubeck, et al., 2023)
- Generative Pre-trained Transformer (GPT) is adopted because of its user-friendly
 API

Fine-tune GPT

- ChatGPT outputs are inconsistent
- Fine-tuning is an approach to transfer learning in which the weights of a pretrained model are trained on new data
- An application of the pretrain-finetune paradigm in LLMs
- Boost the performance of GPT in auto-scoring
- Make the auto-scoring more user-friendly

Benefits of fine-tuning GPT in auto-scoring

- Consistency/ reliability
 - Outputs can be deterministic through proper settings
- Validity
 - Overcome the rater variability in manual ratings
 - Better align the scoring with test developers' intention in a border usages of the test
- Efficiency
 - Reduce cost
 - Increase scoring speed (especially important for some test scenarios, e.g., CAT)

Research questions

- How consistent and accurate is ChatGPT in scoring?
- How accurate are fine-tuned GPT models in scoring under different conditions?
- What are the influence of autoscoring of fine-tuned GPT on latent trait estimates?
- How harsh are the fine-tuned GPT models in scoring in comparison to humans?

Data

• # of students: 930 middle school students

• # of items: 7

• The construct measured: Pattern recognition

 1/3 of the responses were doubly rated according to the scoring guides

Item	Measurement goal	Maximum scores	# of responding students	Average response length	Standard deviation of response length
LZ2	Compare two patterns at two places	2	453	24.15	17.47
LZ3	Compare two pattern at two places	2	452	20.81	12.66
S9	Describe one pattern among several	3	434	29.32	27.98
S12	Describes two or more patterns among several	2	470	25.82	26.18
W13	Describe the exact one pattern	2	416	18.86	17.67
W14	Describes the exact two patterns	2	440	18.65	17.49
W15	Describes the exact two patterns	3	416	20.39	17.57

Procedures

Step 1 Step 2 Step 3 Step 4 Step 5

Remove responses with less than three words

Split data into train and test sets at the ratio of 80:20

Use oversampling techniques to generate train sets of various sample sizes: 10, 50, 100 per category, and all data

For each sample size, generate two sets with and without scoring guides Transform the train sets in to JSON file (system, user, assistant)

Fine-tune GPT model for each item, respectively, through Open Al's API on the train sets Generate prediction for the test sets

For ChatGPT, there is no training process, so I directly asked ChatGPT to produce scores according to the scoring guides five times Further analyses

Consistency of ChatGPT in scoring

Item	Fleiss' Kappa
LZ2	.578
LZ3	.766
S9	.681
S12	.349
W13	.914
W14	.722
W15	.636

Accuracy of autoscoring by fine-tuned GPT models

- As train sizes go up, the accuracy generally increases
- The inclusion of scoring guides increases the performance
- With 100 samples per category and scoring guides, the accuracy is the highest

The influence of autoscoring on latent trait estimates

- GPCM
- Cases with two responses and above
- Correlation of latent trait estimates between manual scoring and autoscoring

Fine-tuned models as raters

- Many-facet models
- Rater x item design

- Incorporate chain of thought or tree of thought into scoring
 - Manual scoring -> GPT aided scoring -> GPT scoring

OpenAl DevDay, Opening Keynote

Q & A

Reference

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., & Zhang, Y. (2023). Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712.

Slobin, D. I. (1996). From "thought and language" to "thinking for speaking".