When Growth Mixture Models Break:

Identifiability Failures and Misleading Model Evaluation

Presenter: Doria Xiao

Affiliations:

Ph.D., University of California, Berkeley;

Postdoctoral Fellow, Stanford University

Conference Details:

BEAR Seminar

September 9, 2025

Berkeley Evaluation and Assessment Research Center

Outline

- 1. Motivation
 - Why model selection is critical in GMMs
 - The stakes when criteria fail
- 2. Frequentist Failures
 - Local maxima and misleading AIC
- 3. Bayesian Failures
 - The likelihood choice issue
 - Negative DIC penalties reveal hidden nonidentifiability
- 4. Consequences of Pathologies
 - Minuscule-class behavior
 - Twinlike-class behavior
- 5. Role of Priors
 - How vague priors exacerbate problems
 - Informative priors as remedies
- 6. Practical Recommendations
 - Using criteria as diagnostics
 - Rethinking evaluation workflow
- 7. Conclusion
 - o Failures are signals, not just noise

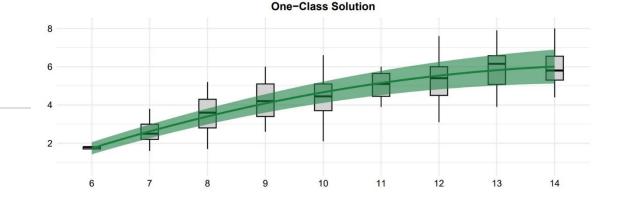
What Are GMMs

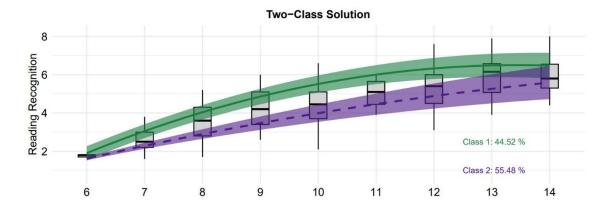
1-class: qualitatively homogeneous growth

• 2-class: early vs. late developers

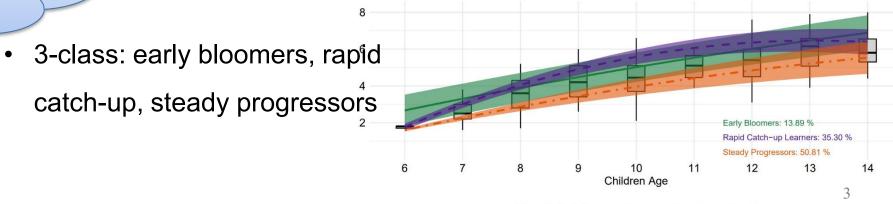
Same data, different interpretations Which model should we trust?

catch-up, steady progressors





Three-Class Solution



How Each Information Criterion Works

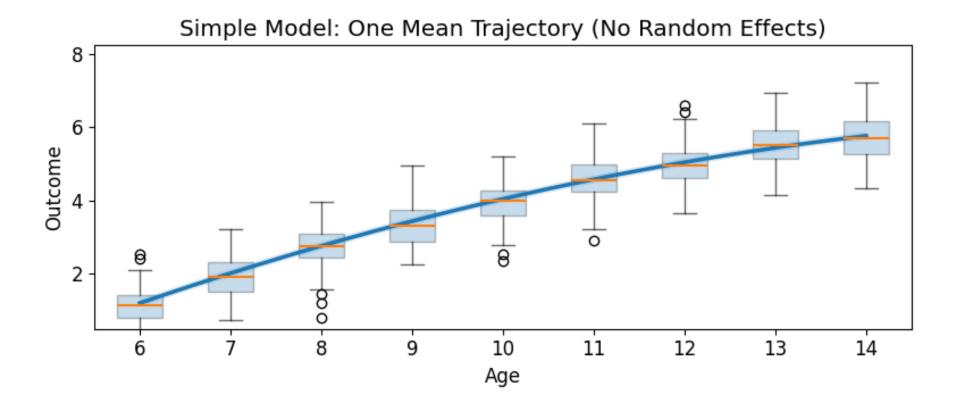
Criterion		Estimator Form	Penalty/complexity p		
	Fit term + Penalty term		Optimism due to using data twice		
AIC (Akaike, 1973)	¹ Stata, Mplus, R/Ime4	$-2\log f(y\mid \hat{\theta}(y)) + 2p$	Number of parameters p		
DIC (Spiegelhalter et al., 2002)	² Open BUGS, JAGS	$-2\log f(y\mid \tilde{\theta}(y)) + 2p_D$	Mean deviance minus plug-in deviance $p_D = \overline{D} - D(\overline{\theta})$		
³ Stan WAIC (Watanabe, 2010)	-2	Plug-in deviance $D(\bar{\theta})$ $\sum_{i} \log p_{\text{post}}(y_i \mid y) + 2p_{\text{WAIC}}$	Posterior variance of log-likelihood contrib. $p_{\text{WAIC}} = \sum_{i=1}^{N} \text{Var}_{\text{post}} \left[\log f(y_i \mid \theta) \right]$ Posterior		
LOO-CV (Vehtari et al., 2016)	-2	$\sum_{i} \log p_{\mathrm{post}}\left(\left.y_{i} \mid y_{-i}\right.\right)$, via PSIS	NA*, leave-one-out reweighting		

Fit term ≈ log-likelihood or log predictive density

Penalty term ≈ effective number of parameters (adjusts for reuse of data)

PSIS: Pareto-Smoothed Importance Sampling (Vehtari et al., 2017)

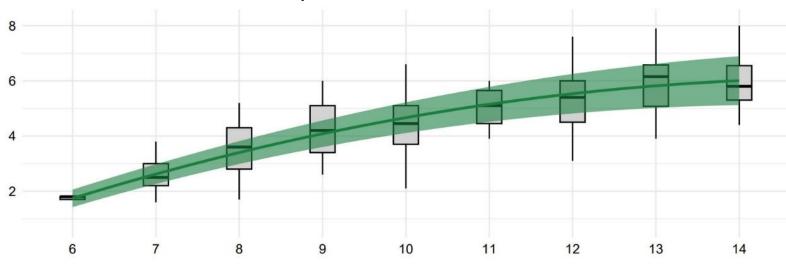
From Simple to Hierarchical to GMM



$$f(\mathbf{y} \mid \boldsymbol{\theta}) = \prod_{i=1}^{N} f(y_i \mid \boldsymbol{\theta})$$

From Simple to Hierarchical to GMM

Hierarchical Model: One Population Curve with Individual Variation



Conditional Likelihood:
$$f_c(\mathbf{y} \mid \boldsymbol{\beta}, \mathbf{r}) = \prod_{j=1}^J f(\mathbf{y}_j \mid \boldsymbol{\beta}, \mathbf{r}_j) = \prod_{j=1}^J \prod_{i=1}^{n_j} f(\mathbf{y}_{ij} \mid \boldsymbol{\beta}, \mathbf{r}_j)$$

 \succ Conditions on random effects r_i -> Predict at individual level*

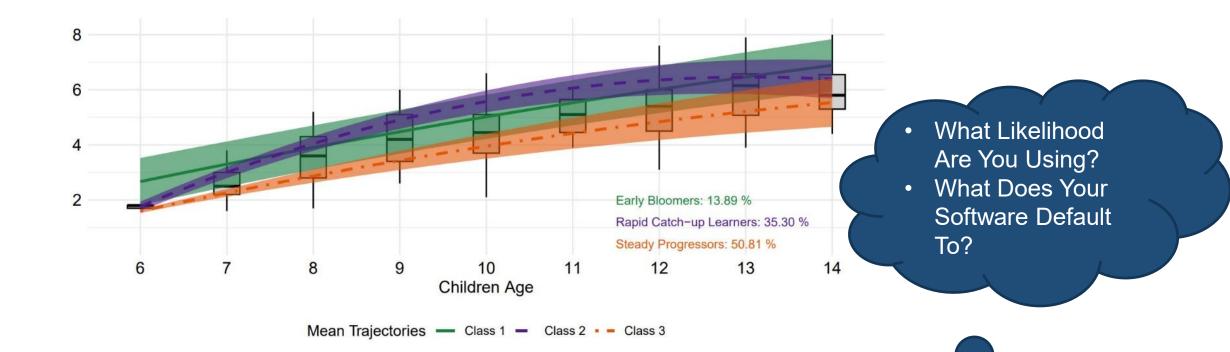
Marginal Likelihood:
$$f_m(y \mid \beta, \Sigma) = \prod_{j=1}^J f(y_j \mid \beta, \Sigma) = \prod_{j=1}^J \int f(y_j \mid \beta, r_j) p(r_j \mid \Sigma) dr_j$$

➤Integrates over random effects -> Predict at population level*

- Vaida, F., & Blanchard, S. (2005, 06). Conditional Akaike information for mixed-effects models. Biometrika
- Spiegelhalter, D. J., Best, N. G., Carlin, B. P., &van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B,
- Merkle, E., Furr, D., & Rabe-Hesketh, S. (2019). Bayesian comparison of latent variable models: Conditional versus marginal likelihoods.

Psychometrika

From Simple to Hierarchical to GMM



$$y_{ij}|_{w_j} = k, r_{1j}, r_{2j} \sim N \left(\mu_{ij}^{(k)}, \sigma_e\right);$$

Categorical latent variable (class label) w_i

Multinomial distribution with probability parameters $\{\lambda^{(1)}, ..., \lambda^{(K)}\}$

Continuous latent variables

• $(r_{1j}, r_{2j})' | w_j = k \sim N(\mathbf{0}, \mathbf{\Sigma}^{(K)})$ with class-specific covariance matrix $\mathbf{\Sigma}^{(K)}$

Bayesian: The Right Likelihood for GMM for the Right Purpose

Likelihood Type	What Is Integrated or Conditioned?	Prediction Target	Valid for	Common Software
Marginal	Integrates over both latent classes and random effects	Predict outcomes in new clusters	Class enumeration	Stan (which marginalizes over discrete parameters)
Conditional	Conditions on class memberships and random effects	Predict outcomes for in-sample clusters	Model comparison for in-sample clusters	OpenBUGS, JAGS
Hybrid	Integrates over classes but conditions on random effects	Ambiguous: in- sample clusters, but use prior for class prob.	Theoretically incoherent	Often occurs by default in Stan when conditioning on random effects

Bottom line:

Only the **marginal likelihood** aligns with the population-level goal of **class enumeration**. Conditional usable for some model comparisons, but **hybrid not valid for model comparison**.

Bayesian: Why DIC Breaks in GMMs, How to Fix It

Problem: Traditional DIC

DIC =
$$\overline{D}$$
 + p_D , where $p_D = \overline{D} - D(\overline{\theta}) \rightarrow$
DIC = \overline{D} + \overline{D} - $D(\overline{\theta})$ = \overline{D} + p_D

In GMMs:

- Skewed / multimodal posteriors, label switching or degenerate nonidentifiability (Xiao, Rabe-Hesketh, & Skrondal, 2015), leads to poor estimate $\bar{\theta}$
- Plug-in deviance too large
- p_D can be **negative or unstable** (Spiegelhalter et al., 2002; Gelman et al., 2013)

More Stable Alternatives

• DIC $_{pV2}$ (Gelman , Hwang, and Vehtari, 2014):

$$\mathrm{DIC}_{pV2} = D(\bar{\theta}) + p_V$$

- Variance-based penalty,
- BUT retains plug-in deviance
- DIC_{pV} (we proposed):

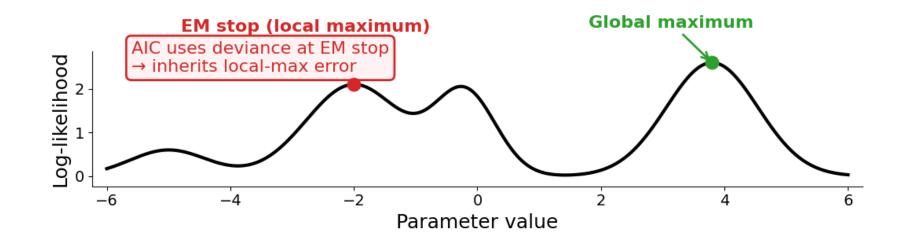
$$\mathrm{DIC}_{pV} = \overline{D} + p_V$$

- No plug-in deviance
- Fully posterior-based

Why AIC Breaks in GMMs, How to Fix It

- Plug-in likelihood depends on EM
- EM can stop at local maxima
- Researchers assume "convergence = global"
- Fix: more iterations, more random starts
- Still no guarantee → trial-and-error

Local Maxima → AIC Computed at Wrong Solution



Simulation Conditions & Structure

Purpose

When do model evaluation tools succeed or fail for enumeration?

Design Factors

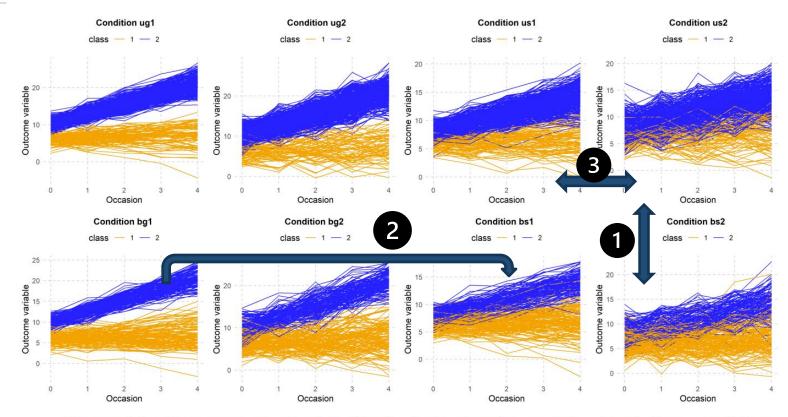


Figure 3.1: Comparison of subject trajectories by class across simulation conditions

Factor	Levels	
Class Probabilities and Level-2 Sample Sizes J	Balanced (λ = 0.5) with J = 250 vs. Unbalanced (λ = 0.2 / 0.8) with J = 400	
Class Separation	Strong vs. Weak slope/intercept differences	
Residual Variability	Low (σ_e = 1) vs. High (σ_e = 2)	

Estimation Setup & Fit Criteria

Design Summary

- Labels: bg1, ug2, us2, etc. (8 simulation conditions)
- **Replications**: 50 datasets per condition
- **Time Points**: 5 per subject
- Models Fitted: 1- to 4-class GMMs
- Total Fits: $8 \times 50 \times 4 = 1,600$ per method

Bayesian Estimation (CmdStan 2.30)

- MCMC Specs: 4 chains × 1,000 post-warmup iterations
- Target: Marginal likelihood
- Information Criteria: DIC, DIC_pV, DIC_pV2, WAIC, LOO-CV

Frequentist Estimation (MLE via flexmix)

- Engine: R flexmix (Grün & Leisch, 2023)
- Information Criterion: AIC

Strengthening EM Estimation

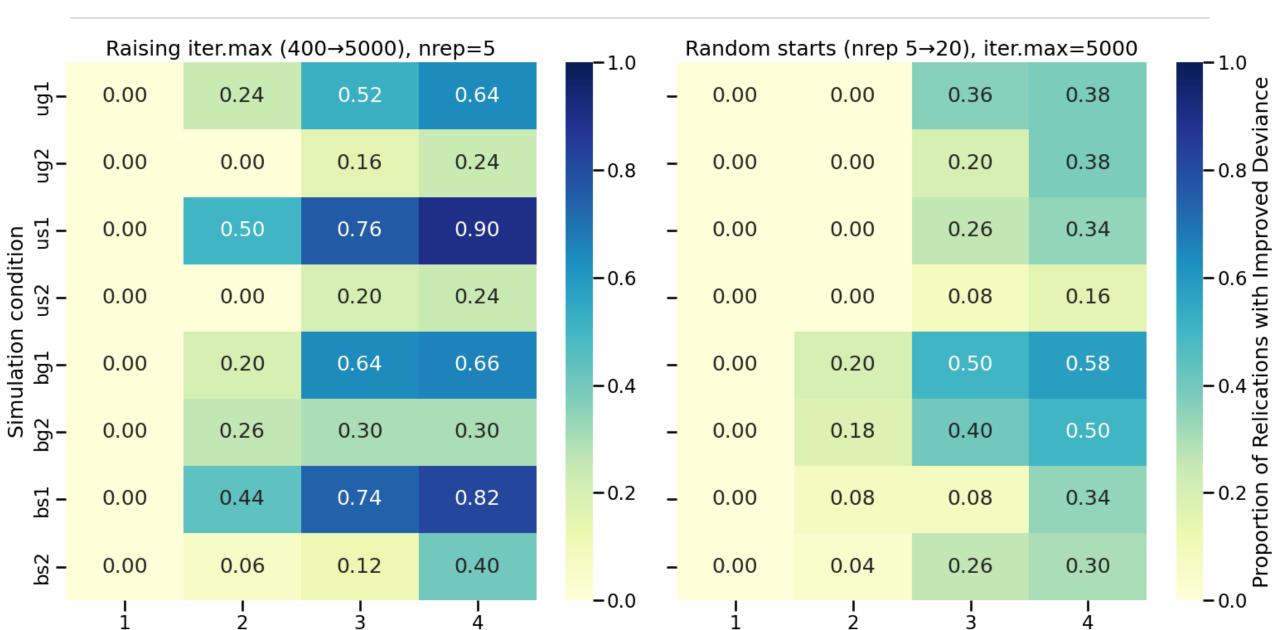
Convergence settings (flexmix, Frequentist)

- iter.max: 400 → 5,000
 Prevents premature stopping
- nrep: 5 → 20 (and beyond)
 More chances to escape local maxima

Bottom note:

These fixes improve robustness, but global maximum is not guaranteed.

EM Convergence: Iteration Cap and Random Starts



EM Local Maxima, Fit Criteria Fail

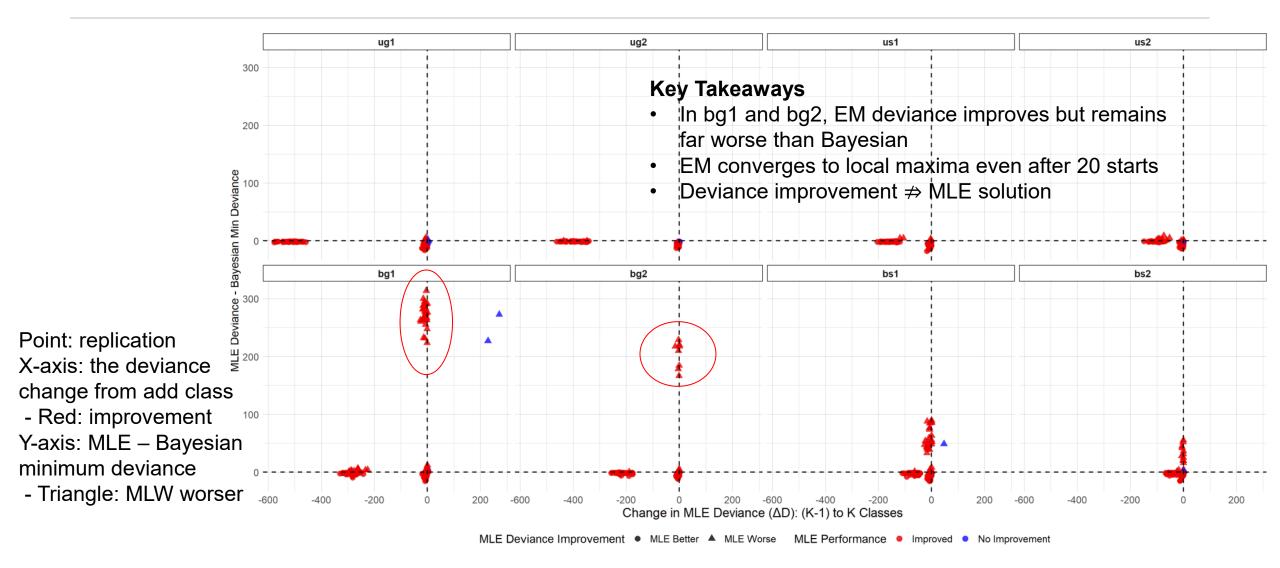
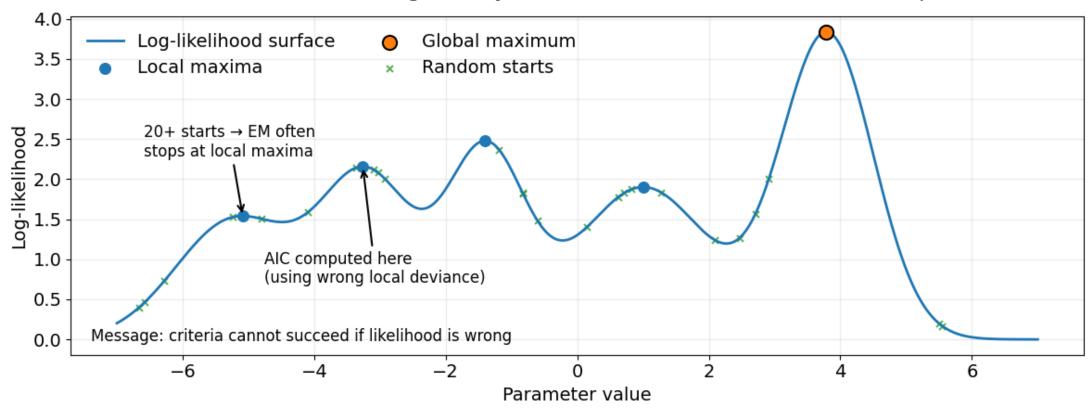


Figure 3.7: Comparison of MLE and Bayesian deviance across simulation conditions (based on nrep = 20).

Brute Force is Not Enough

Brute Force Is Not Enough: Many Random Starts Still Miss the Global Optimum



False confidence, wrong model.

Bayesian Estimation: Why DIC Variants Work When DIC Fails

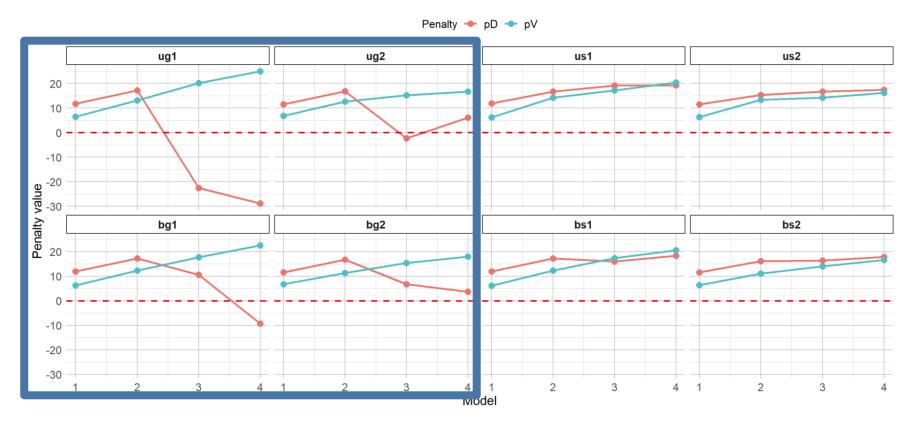


Figure 3.5: Comparison of average DIC penalty terms: Original (p_D) vs. variance-based (p_V) for each simulation Condition.

Traditional DIC penalty (pD) can be negative or unstable Variance-based penalty (pV) always positive and stable across all conditions

Among DIC Variants, DIC_pV Best Aligns with WAIC

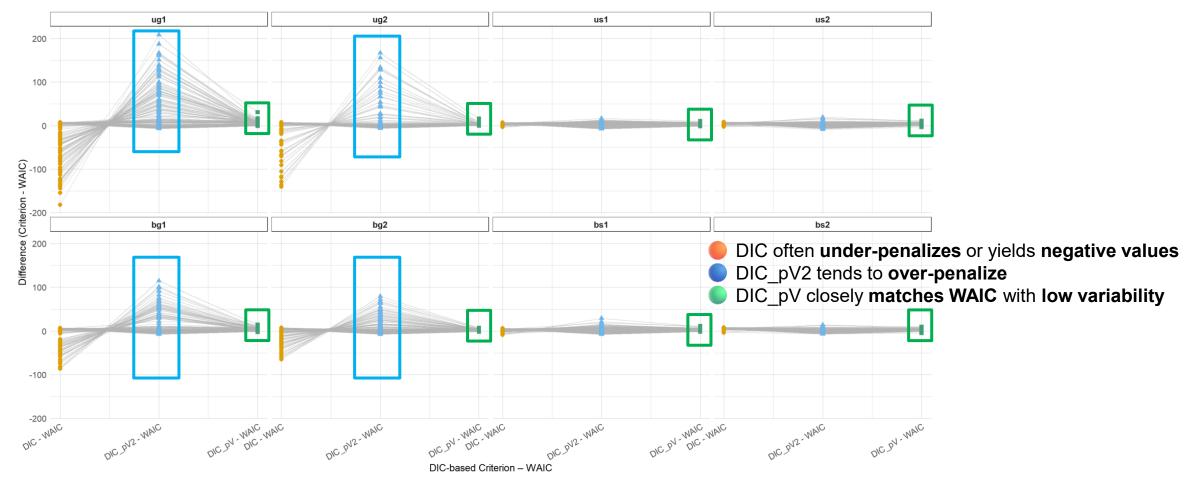
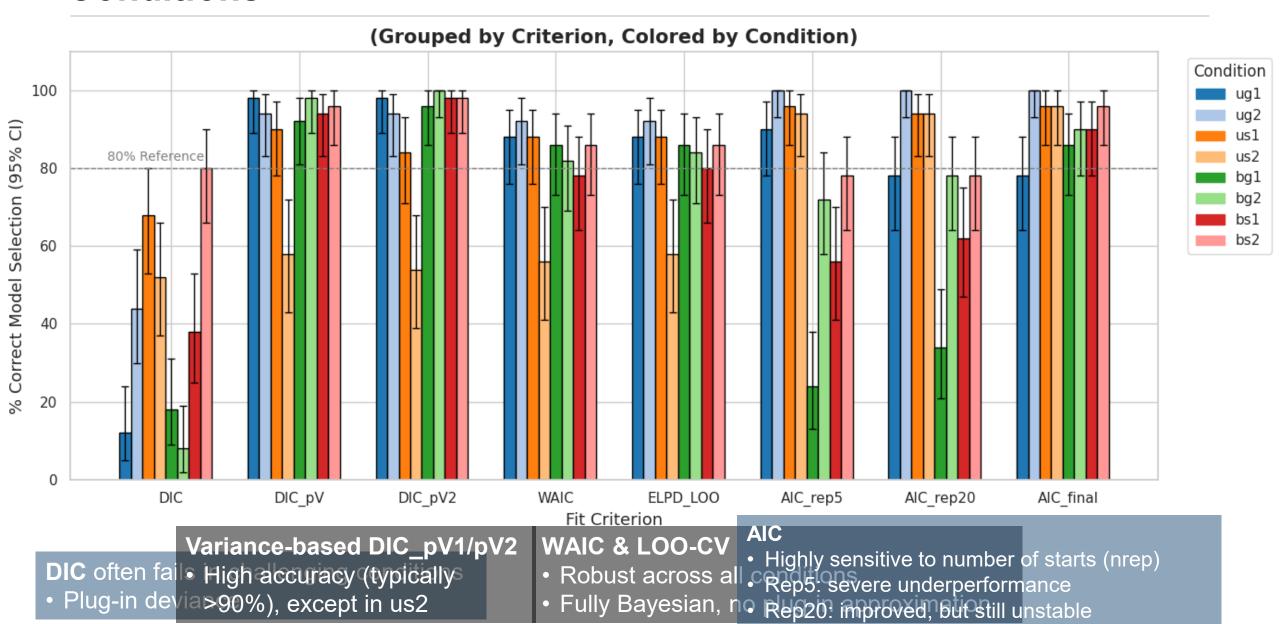
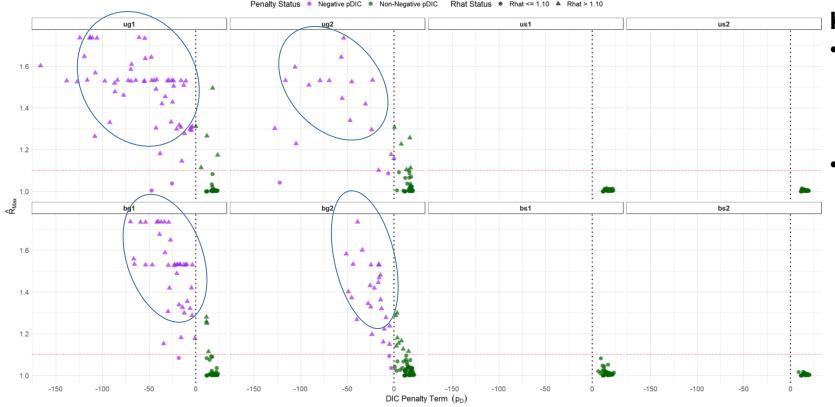


Figure 3.6: Replicate-level comparison of DIC criteria with WAIC for each simulation condition. Each replicate is represented as a path across DIC – WAIC (orange), DIC_{pV2} – WAIC (blue), and DIC_{pV} – WAIC (green).

Information Criteria Performance Across Simulation Conditions



Beyond Selection: When DIC Penalty Reveals Failures



Key Takeaways

- Negative p_D values strongly associated with poor convergence (purple triangles)
- Such failures often stems from **non-identifiability** (Xiao, X., Rabe-Hesketh, S., & Skrondal, A. (2025). Bayesian Identification and Estimation of Growth Mixture

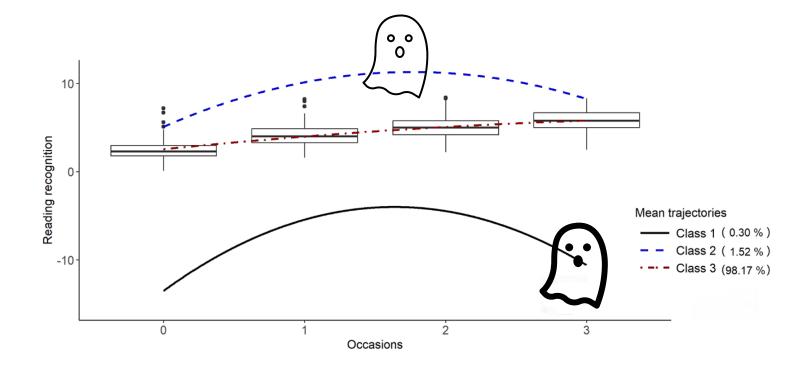
Models. Psychometrika).

Figure 3.2: Relationship between DIC penalty term (p_D) and convergence diagnostic $(\widehat{R}_{\text{Max}})$ across simulation conditions.

- Panels: simulation conditions
- X-axis: p_D
- Y-axis: the maximum convergence diagnostic \hat{R}_{Max}
- Red dashed line at 1.10: the threshold for acceptable convergence
 - Black dotted line at 0: the boundary of p_D
 - Point shape: convergence status (circle/triangle)
 - Point color: whether p_D is negative/non-negative (purple/green)

Consequences of Minuscule-Class Behavior

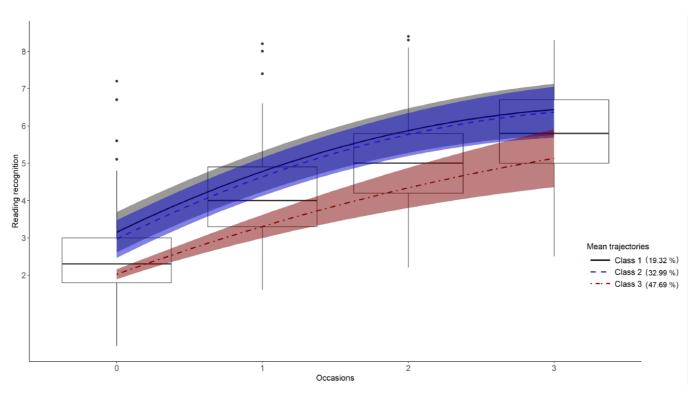
- Class weight collapses toward zero ("ghost" class)
- Parameters drift from prior, not learned from data
- Subgroup trajectory becomes incompatible with observed data



Two classes fit nonsensical curves (tiny class weights). Highlight "phantom" class trajectories with dotted lines.

Consequences of Twinlike-Class Behavior

- One subgroup split into two nearly identical classes
- Creates illusion of distinct learner types
- Leads to overestimating heterogeneity



Same subgroup split in two \rightarrow inflates # of learner types.

What Nonidentifiability Looks Like in GMMs

- Standard convergence (R) may not detect these
- Distinguishability Index (DI): near zero flags collapsed or indistinguishable classes

Negative p_D as a Diagnostic

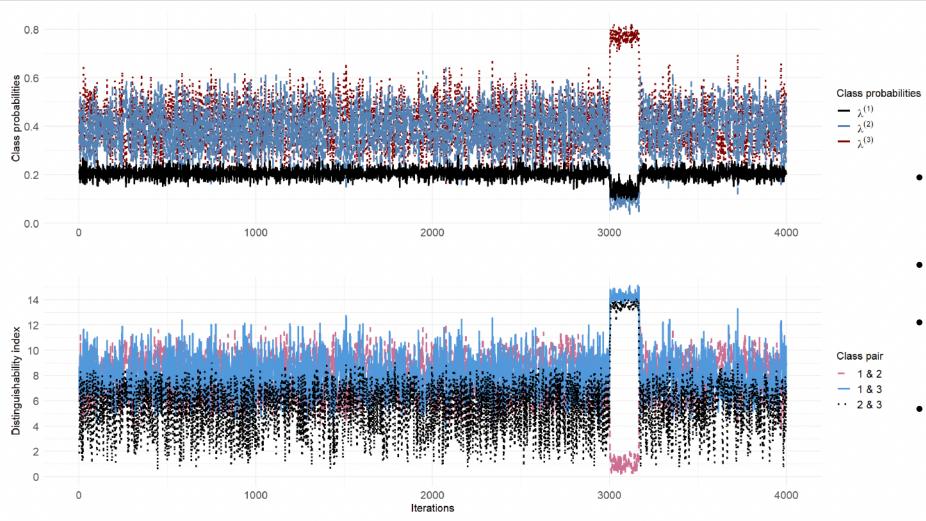


Figure 3.3: Traceplots of class probabilities and distinguishability index (DI) for Condition ug2, replicate 21, 3-class model.

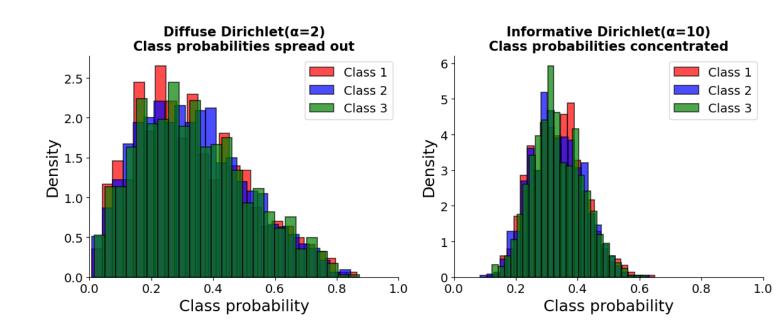
- Example: 3-class model with acceptable $\hat{R}_{\text{Max}} = 1.04$
- But p_D strongly negative -122
- Chain switches between degenerate solutions, undermining stability
- Distinguishability Index shows classes collapsing

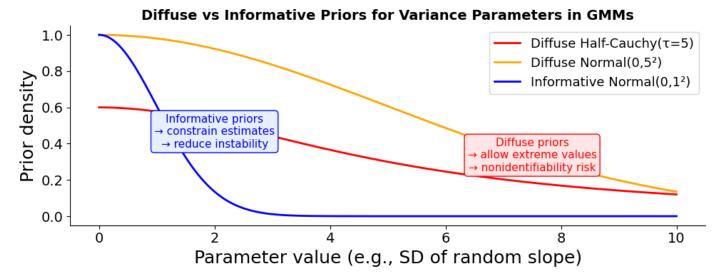
From Weak Priors to Nonidentifiability

 Priors too weak → model can't separate classes.

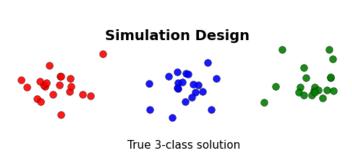
Example defaults

- Class probs: Dirichlet(α = 2)
- SDs: half-Cauchy(τ) or half-Normal(τ)



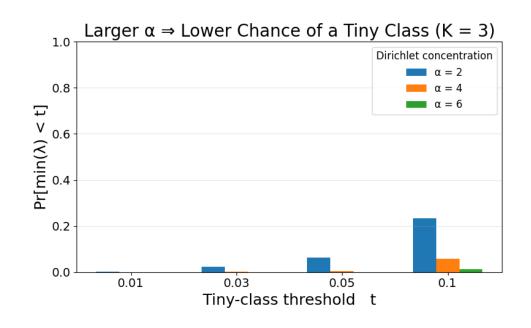


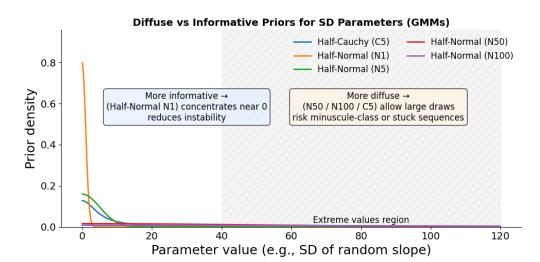
Simulation Highlight: Testing Priors for Stability



200 chains × 1,000 iterations

Simulated responses for a real data using a well-behaved 3-class solution.





Findings:

- Vague priors → more stuck chains and minuscule-class behavior
- Informative priors → fewer failures, more stable estimation

Practical Prior Choices

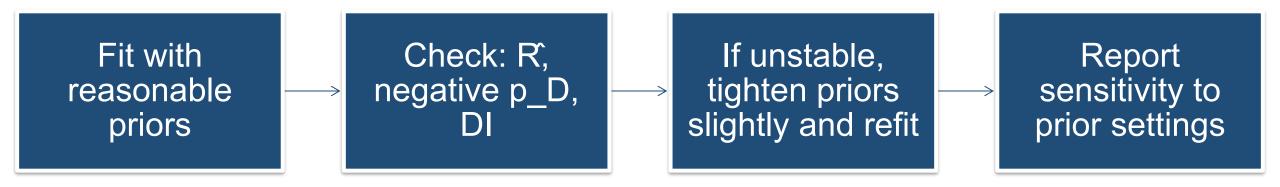
Prefer half-Normal for SDs over half-Cauchy

Choose α to reflect plausible class balance

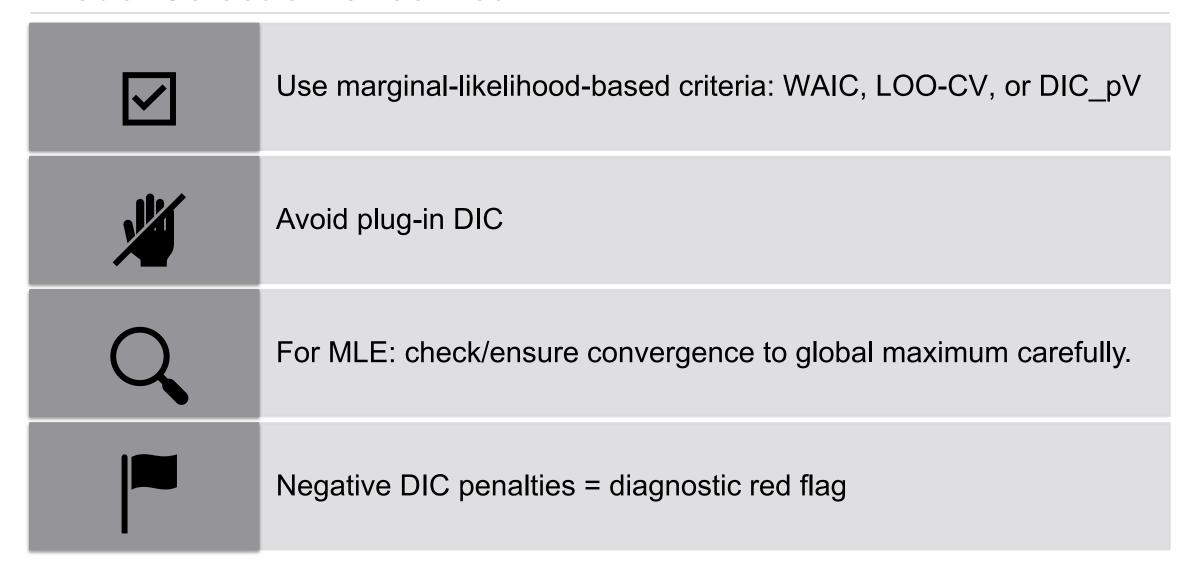
Use weakly informative fixed-effect priors with realistic scales

Tune priors in response to diagnostics

Minimal Workflow You Can Use Tomorrow



Model-Selection Checklist



Thank You

Questions? Feedback welcome.

Seatbelts on, chairs filled, thermostat set, stethoscope ready.

https://doriaxiao.github.io/

References

- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using Ime4. *Journal of Statistical Software*, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
- Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. *Statistics and Computing*, 24, 997–1016.
- Grün, B., & Leisch, F. (2023). *flexmis: Flexible mixture modeling*. https://CRAN.R-project.org/package=flexmix (R package version 2.3-19)
- Jung, T., & Wickrama, K. A. S. (2008). An introduction to latent class growth analysis and growth mixture modeling. *Social and Personality Psychology Compass*, 2(1), 302–317. https://doi.org/10.1111/j.1751-9004.2007.00054.x
- Merkle, E. C., Furr, D., & Rabe-Hesketh, S. (2019). Bayesian comparison of latent variable models: Conditional versus marginal likelihoods. *Psychometrika*, 84(3), 802–829. https://doi.org/10.1007/s11336-019-09679-0
- Muthén, L. K., & Muthén, B. O. (1998-2017). Mplus user's guide. In www.statmodel.com (8th ed.). Muthén & Muthén.
- Plummer, M. (2017). JAGS version 4.3.0 User Manual. Retrieved from https://sourceforge.net/projects/mcmc-jags/files/Manuals
- Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 64(4), 583–639. https://doi.org/10.1111/1467-9868.00353
- Stan Development Team. (2021). CmdStan User's Guide: Version 2.30. https://mc-stan.org/docs/cmdstan-guide/index.html
- StataCorp. (2023). Stata statistical software: Release 18. College Station: StataCorp LLC.
- Surhone, L. M., Tennoe, M. T., & Henssonow, S. F. (2010). OpenBUGS. Betascript Publishing.
- Vaida, F., & Blanchard, S. (2005). Conditional Akaike information for mixed-effects models. *Biometrika*, 92(2), 351–370. https://doi.org/10.1093/biomet/92.2.351
- Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27, 1413–1432.
- Wardenaar, K. J. (2020). Latent class growth analysis and growth mixture modeling using R: A tutorial for two R-packages and a comparison with mplus. PsyArXiv. https://doi.org/10.31234/osf.io/m58wx
- Xiao, X., Rabe-Hesketh, S., & Skrondal, A. (2025). Bayesian Identification and Estimation of Growth Mixture Models. *Psychometrika*, 1–34. doi:10.1017/psy.2025.11